
 1

Abstract-- Traditional Substation automation/integration

systems involve huge numbers of man-hours to commission and
maintain, even for similar systems. Using object-oriented
technologies can reduced this commissioning time by around
80%. This has been demonstrated by field experience. The real-
time information processing objects are composed of
interaction-GUI parameters, real-time data, and functional
processing. The defined objects – classes can be re-used among
all the projects. Commissioning a new project is just to create
instances of classes by “drag and drop”. No more individual
point/tag definition or verification is needed. These steps were
done once when class was created. Changes made to class will
change all its instances automatically. The classes can be
inherited from, referred to, and embedded into others classes.
Simple naming convention makes data usage instances link to
data source instances automatically.

Index Terms— Substation integration and automation,
Object-oriented methods, Real-time systems,

I. INTRODUCTION

HE traditional real time processing system is built on
point/tag concepts, each point/tag represents a basic real-

time information item in the system. Based on this concept,
first step of building a real time application – substation
integration system or a control center SCADA master, is
definition and creation of the real time database. Most of us are
familiar with this task of defining each point/tag of each I/O
type of very IED/RTU and the virtual/calculated points, then
creating interactive part GUI to database– graphics with
correct real time data linkage. In addition to using some special
tools to build the calculation/control logic definitions. After all
the creation, the major task is still ahead. To verify all the
point/tag definitions one by one are correct and have the
correct dynamic linking to the graphics. The only relief we
could receive from these database definition procedure is to
use some kind of spreadsheet or text file editing with import
capability to avoid typing the similar text again and again. For

J. Y. Cai is with Doubletree Systems, Inc. – a XJ group company (e-

mail: jimcai@dsius.com).
H. L. Smith is with HLS Consultant Services, USA (e-mail:

HLSConsultant@aol.com).

graphics creation, some basics component can be grouped
together as template to save some time.

An object-oriented approach might be the right way to go. As
we all know there are no completely identical projects in the
world. But in most cases, we do have similar projects with
similar elements. For example, in substation
automation/integration applications, each power company will
want all the breakers with the same voltage level to behave in
exactly the same manner: same alarming logic, same graphical
representation, and same operator prompt to trip/close. So
conceptually, we want to treat this breaker as a basic object or
brick.

II. OBJECT STRUCTURE FOR REAL-TIME INFORMATION
PROCESSING

We may get really confused and frustrated if we try to
exactly define an object-oriented system/software package. As
real time information processing application engineers, what
we look for is re-use or duplication. These basic tested objects
can be re-used in the same project, in different projects
individually without testing being required in new projects.

This paper presents an objected-oriented real time
information processing solution implemented on Linux that is
already in operation in the field.

A. Generic Object Structure

Let’s first clarify some terms we use. The term “object” is a
generic term as a concept. “Object” in this paper or our
solution does not specifically have any strict definition. We
use the term “object” to describe the implemented approach.
Each object has three basic elements, data, method (functional
processing), and interaction to the GUI (graphic user interface
). We use “class” to represent an object or say strict definition
of objects. The term “class” has same definition as in C++
language. Or you can say, class is a template.

The term “Instance” is the utilization of a class. The
instances are composed of partially real time
information/database. So “Object” here refers to class and
instance.

As we mentioned above, the object is composed of three
parts: real time data, functional processing, and user
interaction.

The real-time data are values and definitions of analog,
digital, etc. By “drag and drop”, you create an instance of the

Using Object-Oriented Technologies to Solve
Substation Automation Dilemma

Jim Y Cai, Member, IEEE, and H. Lee Smith, Life Senior Member, IEEE

T

 2

object, which is identical to creation of traditional real-time
database. Then the values and attributes of analogs, digitals

will be updated accordingly.

Fig. 1. Object Structure for Real time Information Processing

B. Real-time Data

A class could have hundreds of instances in a project. In
some instances some data could be shared with all instances or
whole system. Some data specific in each instance can’t be
shared among other instances. We call the shared data server
data. The non-shared data is called client data. In the class
builder tool, there are two panels for each class: one is titled
“server data” and other is titled “client data”.

Both server and client resource members can be all kinds of
data types including elementary data types like integer, class
type, reference types, and alarm type.

Server data has access authorization levels to make data
variables private, friendly, and global. Addressing format for
the variable is xxx.yyy. . .vvv. The first xxx is the instance name
of this object, which must be unique system-wide. The last
vvv is variable name. Between two are the names of class or
referred instance. So we can address a breaker status in a
substation by Sub1.Bay1.Breaker.status1. All the characters in
the names can be in different language character sets.

C. User Interaction - GUI

User interaction defines how the object is displayed on the
screen including static background. The dynamic update rate
and how the object reacts to operator action by clicking or
pressing some key are also defined.

D. Functional Processing with IEC 61131-3

Functional processing may be:
Inter-locking logic for a breaker operation,
Alarming for breaker status,
Simulation logic for testing and/or training purpose,
Special calculation,
Or algorithms.

Functional processing can be created by following
IEC61131-3 ladder logic language and/or by using the

system proprietary scripting language. The functional
processing can be executed continuously or on demand.
This feature is also called soft PLC (Programmable logic
controller) function and the system will guarantee that all
the continuous logic execution finishes in a timely manner.

III. IMPLEMENTATION

Real time information processing always consists of real
time data acquisition, and real time data presentation. The real
time data acquisition provides interface to field devices – IEDs.
While the real time data presentation provides user interaction
interfaces and displays. Objects that provide interfaces to IED
are data source objects . Data usage objects are objects that
provide user interaction interfaces. An example is used to
explore the idea in the following section. There is one 220KV
bay in a substation, which has a breaker and switches with one
multi-function protective relay IED. There are two data source
objects for this bay, one for the bay controller IED and one for
the protective relay. And there is one data usage object - the
bay object, which may be derived from the breaker and switch
class. The object defines the graphics display, the pop-up
windows, interlocking, alarming, etc.

A. Data Source Objects – IED definitions

Data Source Objects contains basically three functions:

Protocol interpretation;
 IED interface’s control, settings, and diagnostics;
 Data point definitions.

Protocol interpretation is a special processing function of

the object to interrupt the communication message by
following the defined architecture. For each IED interface, GUI
is definitely needed to control, monitor and diagnose the
interface such as start/stop polling, reset the channel, etc. The
point list will define variables associated with all the points as
well as data types. Obviously, those data are server data so the
other objects can access them accordingly.

For the above protective relay IED, a class is created, which
will share the same protocol interpretation function with the
other classes. The protective relay classes could have their
own GUIs (like using their IED picture/LEDs as its own
background). The IED point list will include, for instances,
OC_Activated, Breaker_Trip, Breaker_Status,
Breaker_Trip_Coil, GroundingSwitch_Status. All the points
can be imported via a text file, which could be generated by
IED configuration tool. Definition file in the future IEC61850-6
substation configuration language could be used. When an
instance BAY1_IED is created from the protective relay class,
then I/O points can be addressed as

BAY1_IED.OC_Activated,
BAY1_IED.Breaker_Trip,
BAY1_IED.Breaker_Status,

Real Time
Data

Functional
Process

User
Interactions

Figure 1. Object Structure

Breaker
Status

Trip Coil Status

Close

By IEC 61131-3

 3

BAY1_IED.Breaker_Trip_Coil,
BAY1_IED.GroundingSwitch_Status.

Classes for different I/O configurations of IEDs with same

protocol can be easily created by only editing the I/O
definition text file.

And also all the engineering scaling, ranges can be defined
in the class. When data source class is created in house, full
testing and documentation can be done in house. The class
encapsulates all the information needed. Then the class can be
used across projects with peace of mind.

B. Data Usage Objects – One-line Diagram

A substation bay on a one-line diagram consists of breakers
and switches. The basic requirement is that the dynamic text
and graphics should be updated automatically. It should have
appropriate pop-up/prompts for the operator’s interaction,
alarming when analog values go out of limits and digital status
change state. The object definition should also include event
logging associated with the bay, bay level interlocking which
monitors and controls operates breakers and switch operations.

To create this bay class, the class variables are defined as:

$Instance_IED.OC_Activated,
$nstance_IED.Breaker_Trip,
$Instance_IED.Breaker_Status,
$InstanceIED.Breaker_Trip_Coil,
$Instance _IED.GroundingSwitch_Status.

Here “$Instance” is a substitution command. When an
instance gets created with this class, they will be replaced with
instance name. Please note that the class variable names are
the same as in the IED class. By using those variables, the
dynamic update, interlocking logic can be implemented. By
using the class builder tool, graphics as well as all the pop-
ups/prompt cab be created as you wish. Using the built-in
function block classes compatible with IEC61131-3,
interlocking logic is easily implemented. During this creating
process, the source of the variables is ignored

Then by drag and drop, the bay instance by name is
created with name Bay1. The system will automatically link the
bay variables to the IED variables.

C. Objects Linking – Naming Convention in Class Building

Still we need naming convention to accomplish automatic
linking between the data source and the data usage objects.
Variable name of both data source and data usage classes must
be the same so all the instances created with the classes can be
automatically linked.

D. Object Reuse

Reuse is the method for reducing the commissioning effort.
Object reuse is accomplished through:

Classes and instances,
Inheritance-type embedded classes,
Instance referencing,

Mirroring instances.

Class and instances is basic reuse architecture. Each class

can contain fully tested and field proven data definitions,
function processing and GUIs, documentation as well as class
version information. The class is a fully encapsulated element.
When class is being copied among projects, it keeps all the
information and relationships intact. In most cases, a
modification to the class will automatically apply to all the
instances.

The Inheritance-type embedded class feature makes the

class more powerful and easy to manage. For example, bay
class can be built up from switch and breaker classes. When
you create an instance of a bay class, the switch and breaker
instances will be created automatically.

Instance referencing is a linkage to other instances and a

mechanism of accessing objects.
The mirroring function makes sure that the same instance

can be viewed at several places or on multiple screens without
creating multiple instances.

E. Project Implementation Procedure

Object modeling analysis is the first step of the project
implementation. The analysis can be at the
industry/application level to define generic objects for
substation integration/automation. The analysis can be at the
project level to define generic objects for specific projects or
customers. For substation integration/automation application,
the following classes identified:

Data usage objects: single pole and three pole switches,
single pole and three pole breakers, bay classes, bus classes,
and transformer classes. Note only one switch class is needed
for single pole switches to cover switches for all voltage levels ,
no matter what color and position orientation,

Advanced application classes (automatic transfer, load
shedding, voltage/reactive control, etc.),

Data source objects: Protective relay IED classes, bay
controller classes and meter IED classes.

As substation integration/automation system providers,
several class libraries have been built :

1. IED class libraries to cover most commonly used IEDs
like XJ’s transmission line protection devices,

a. WH801, transformer protection
b. WBH801, bus protection WMH801,
c. GE UR’s T60, D60, L60
d. SEL-421, etc.

These IED classes can be used almost in all projects
without any customization.
2.One-line display class libraries. Usually, each
customer has their unique requirements for the GUI and
processing functions. Therefore a library must be
maintained for specific user/utilities along with the
baseline;

 4

3. Advanced applications libraries. In most cases, these
classes can be re-used without any customization.

Again, all the classes can be built, and fully tested in-house
with supporting documentation. For a specific project, the
classes from the class libraries can be re-used to create, test
and document the project. If customization is needed, the class
build tool is used to provide a built-in version control feature
to track all the modifications.

F. Operating Experiences

As an example consider a 220KV substation with two 220KV
lines, ten 110KV feeders, twenty 10KV feeders, two three-
winding transformers. About 50 classes used. About 30 of
classes are IED classes, 15 one-line diagram classes, and
several advanced application classes. Approximately 100
turnkey substation integration/automation systems are
delivered worldwide each year. Approximately 80% of the
traditional commissioning time has been saved using the
object definition approach.

IV. ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions of Mr.

Yonghua Zhou, Yonghua Liu, and Yong Wei of XJ Group
Corporation for sharing their work.

V. BIOGRAPHIES

Jim Y Cai (M’1997) graduated from the Shanghai Jiao-Tong
University, China and received B.Sc. and M.Sc in 1983 and 1985
respectively. His employment experience includes the China Computer
Systems Engineering, Open Systems Control, Doubletree Systems, Inc.
His special fields of interest include power system automation and
control. Jim Y Cai is also member of IEEE PSRC and Technical Expert
IEC TG57 Working Group 3.

H. Lee Smith , PE (LSM)BSEE, MSEE, PE in PA, Member Substation
Committee, Data Acquisition, Processing Control Subcommittee,
Technical Expert IEC TG57 Working Group 10, US Coordinator TC57
WG 10, 11, 12. Adjunct Professor Penn State University. Author over
40 technical papers and article including IEEE/PES Tutorial on
Automation Systems, chapter on Remote Terminal Units. For the past
twenty years, he was employed by two different automation suppliers in
an executive staff position. Presently self- employed as Principal
Consultant with HLS Consultant Services.

